A BBP–Mud2p heterodimer mediates branchpoint recognition and influences splicing substrate abundance in budding yeast
نویسندگان
چکیده
The 3' end of mammalian introns is marked by the branchpoint binding protein, SF1, and the U2AF65-U2AF35 heterodimer bound at an adjacent sequence. Baker's yeast has equivalent proteins, branchpoint binding protein (BBP) (SF1) and Mud2p (U2AF65), but lacks an obvious U2AF35 homolog, leaving open the question of whether another protein substitutes during spliceosome assembly. Gel filtration, affinity selection and mass spectrometry were used to show that rather than a U2AF65/U2AF35-like heterodimer, Mud2p forms a complex with BBP without a third (U2AF35-like) factor. Using mutants of MUD2 and BBP, we show that the BBP-Mud2p complex bridges partner-specific Prp39p, Mer1p, Clf1p and Smy2p two-hybrid interactions. In addition to inhibiting Mud2p association, the bbpDelta56 mutation impairs splicing, enhances pre-mRNA release from the nucleus, and similar to a mud2::KAN knockout, suppresses a lethal sub2::KAN mutation. Unexpectedly, rather than exacerbating bbpDelta56, the mud2::KAN mutation partially suppresses a pre-mRNA accumulation defect observed with bbpDelta56. We propose that a BBP-Mud2p heterodimer binds as a unit to the branchpoint in vivo and serves as a target for the Sub2p-DExD/H-box ATPase and for other splicing factors during spliceosome assembly. In addition, our results suggest the possibility that the Mud2p may enhance the turnover of pre-mRNA with impaired BBP-branchpoint association.
منابع مشابه
Cross-Intron Bridging Interactions in the Yeast Commitment Complex Are Conserved in Mammals
The commitment complex is the first defined step in the yeast (S. cerevisiae) splicing pathway. It contains U1 snRNP as well as Mud2p, which resembles human U2AF65. In a genetic screen, we identified the yeast gene MSL-5, which is a novel commitment complex component. Genetic and biochemical criteria indicate a direct interaction between Msl5p and both Mud2p and the U1 snRNP protein Prp40p. Thi...
متن کاملInteractions of the yeast SF3b splicing factor.
The U2 snRNP promotes prespliceosome assembly through interactions that minimally involve the branchpoint binding protein, Mud2p, and the pre-mRNA. We previously showed that seven proteins copurify with the yeast (Saccharomyces cerevisiae) SF3b U2 subcomplex that associates with the pre-mRNA branchpoint region: Rse1p, Hsh155p, Hsh49p, Cus1p, and Rds3p and unidentified subunits p10 and p17. Here...
متن کاملThe Splicing Factor BBP Interacts Specifically with the Pre-mRNA Branchpoint Sequence UACUAAC
The yeast splicing factor BBP (branchpoint bridging protein) interacts directly with pre-mRNA at or very near the highly conserved branchpoint sequence UACUAAC within the commitment complex. We also show that the recombinant protein recognizes the UACUAAC sequence. Therefore, BBP is also an acronym for branchpoint binding protein. The mammalian splicing factor SF1 is a BBP ortholog (mBBP) and a...
متن کاملThe yeast MUD2 protein: an interaction with PRP11 defines a bridge between commitment complexes and U2 snRNP addition.
In characterizing a series of yeast (Saccharomyces cerevisiae) mutants synthetic lethal with U1 RNA, we have identified a yeast gene (MUD2) with sequence similarity to the well-studied metazoan splicing factor U2AF65. The biochemical characterization indicates that the MUD2 gene product (MUD2P) contacts pre-mRNA directly and is a component of the pre-mRNA-U1 snRNP complex (commitment complex) t...
متن کاملA cooperative interaction between U2AF65 and mBBP/SF1 facilitates branchpoint region recognition.
During the early events of pre-mRNA splicing, intronic cis-acting sequences are recognized and interact through a network of RNA-RNA, RNA-protein, and protein-protein contacts. Recently, we identified a branchpoint sequence binding protein in yeast (BBP). The mammalian ortholog (mBBP/SF1) also binds specifically to branchpoint sequences and interacts with the well studied mammalian splicing fac...
متن کامل